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Introduction 
Moore’s Law, which stated that “the complexity for minimum component costs has increased at a rate of roughly a factor 
of two per year “, is slowing down due to the enormous cost of developing new process generations along with feature 
sizes approximating silicon interatomic distances. With the end of Dennard scaling  (i.e; the rather constant power density 
across technology nodes, and the increase of operating frequency with each technology node) more than 15 years ago, 
using more transistors to build increasingly parallel architectures was a key focus. Now, other ways need to be found to 
deliver further advances in performance. This can be achieved by a combination of innovations at all levels: technology 
(3D stacking, using physics carry out computations, etc.), architecture (e.g., specialization, computing in/near memory, 
dataflow), software, algorithms and new ways to represent information (e.g., neuromorphic – coding information “in 
time” with “spikes”, quantum, mixed precision). A closely related challenge is the energy required to move data, which 
can be orders of magnitude higher than the energy of the computation itself.  

These challenges give rise to new unconventional HPC architectures, which, through some form of specialisation, achieve 
more efficient and faster computations. This paper covers a range of new unconventional HPC architectures which are 
currently emerging. While these architectures and their underlying requirements are naturally diverse, AI emerges as a 
technology that drives the development of both novel architectures and computational techniques due to its 
dissemination and computing requirements. The ever-increasing demand of AI applications requires more efficient 
computation of data centric algorithms. Furthermore, minimising data movement and improving data locality plays an 
important role in achieving high performance while limiting power dissipation and this is reflected in both architectures 
and programming models. We also cover models of computation that differ from those used in conventional CPU 
architectures, or models that are purely focussed on achieving performance through parallelisation. Finally, we address 
the challenges of developing, porting and maintaining applications for these new architectures. 
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Key insights 
• While a lot of efforts in the last decade have 

focussed on delivering more performance 
through parallelism, unconventional HPC 
architectures now seek to improve both 
performance and efficiency through 
specialisation, e.g., adapting the compute 
architecture to an underlying model of 
computation, leading to challenges of 
handling heterogeneity on top of parallelism; 

• A key aspect of efficiency improvements is a 
focus on reduction of data movements and 
improving the locality of data, e.g., through 
dataflow or in/near-memory computing 
techniques; 

• AI is an important driver for both novel 
architectures and computational techniques; 

• There is an emergence of novel non-CMOS 
technologies.  Novel devices will be an 
important enabler for the success of new in-
memory analog computing concepts; 

• The trend to unconventional HPC 
architectures is accompanied by novel 
computational models and techniques, e.g., 
using lower precision computations or 
accommodating for unreliable computations; 

• CMOS-based analog computing can 
significantly reduce silicon cost for 
applications like AI inference. 

 

Key recommendations 
• In order to effectively leverage unconventional 

HPC architectures, novel tools and methods are 
needed for dealing with code porting, 
optimisation, and maintainability. It also requires 
a community effort and a focus on training and 
education; 

• Novel co-design approaches are needed for 
bridging the gap between classical HPC 
applications, AI chips and novel AI-inspired 
formulations of HPC algorithms; 

• Leveraging variable precision and custom 
numerics can be very beneficial in unconventional 
architectures but requires novel tools and 
approaches to code development and 
optimisation; 

• Further research is needed on novel devices and 
their integration in the mainstream CMOS process 
technologies and infrastructure for neural and AI 
accelerators, e.g., resistive (memristors etc.), 
magnetic and phase change devices; 

• Further research should be pursued into 
accelerators for event-based neuromorphic 
computing as these will be required for future 
neuroscience, such as full brain emulation, and for 
energy-efficient AI; 

• Open standard approaches should be promoted 
that support future HPC architectures, including 
standardized fabrics, to enable multi-vendor 
composable systems from heterogeneous 
resources. 
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Novel HPC Architectures 
The concepts of standardisation and specialisation have long been recognised as competing forces driving the 
development of electronics and computers. Standardisation has the benefit of making the technology easier to use and 
deploy, while specialisation can offer greater efficiency. The concept of a general-purpose processor in itself is arguably 
highly generic and standardised, and in the last decade we observed a dominance of x86 architectures in desktop 
computers and data centres, and ARM architectures in mobile devices. 

However, in recent years one could observe a trend towards more diverse and specialised architectures. Many desktop 
CPUs now include GPUs and mobile CPUs move towards completely integrated system-on-chip architectures. They offer 
different cores for light and more intense workloads as is the case in the Arm big.LITTLE architecture. Other examples 
include neural accelerators, such as the ones used in Apple's mobile and desktop processors. Embedded systems include 
specialized accelerators as well, for data manipulation (DSPs, FFT, encoders/decoders, encryption, etc). While these 
examples are specific to desktop and mobile, we also observe a focus on new architectures in HPC and data centres.  

For example, GPUs are now frequently used for a range of non-graphics tasks (General-Purpose GPU or GPGPU), and they 
are the most common form of accelerator used in HPC. They are commonly used to accelerate compute intensive 
workloads which exhibit regular parallelism and require floating-point computations and high throughput. In the 
following we describe some of the most prominent examples of emerging unconventional HPC architectures.  

FPGA-based implementation of unconventional HPC architectures 
One very promising approach for accelerating a wide range of compute-intensive applications is to use reconfigurable 
hardware such as field-programmable gate arrays (FPGAs). FPGAs operate at much lower clock frequencies than most 
CPUs but they allow to create accelerators with massive amounts of parallelism. The accelerator is not programmed using 
serialized instructions from a fixed and limited instruction-set-architecture (ISA); instead, it is created by spatially mapping 
the components of the algorithm to a large number of reconfigurable logic, memory and interconnect resources inside 
the FPGA. Therefore,  the generated hardware is highly customised to the unique nature of the algorithm that needs to 
be accelerated. Often, dataflow models are used to program FPGA accelerators, which avoid the costly movement of data 
in and out of the multi-tier memory hierarchy of a CPU. In a dataflow model, computations are executed based on data 
availability. For suitable algorithms, this results in higher performance than multi-core CPUs or GPUs but also much higher 
energy efficiency. 

As a result, FPGAs have started to become competitors to many-core accelerators, such as GPUs and vector processors, 
in the HPC ecosystem. For more than a decade, there has been extensive research in using FPGAs for application 
acceleration, and in particular in applications with irregular memory access patterns, and applications that may not need 
full double-precision floating point formats and instead benefit from reduced precision without loss of accuracy, where 
significant improvements over GPUs can be realised. For example, AI inference with low precision (even down to 1 bit) 
can be carried out very efficiently on FPGAs. However, a major obstacle to the widespread commercial adoption of FPGAs 
in HPC is the higher programming effort and the limited maturity of the development tools, which discourage application 
developers from utilizing them. Historically, FPGAs are used as reprogrammable hardware blocks for special purpose 
applications and logic emulation, and more recently, as standalone SoCs (e.g. in mobile communication), so the tools and 
programming environments are usually optimized for building a single monolithic application for the FPGA by following 
an electrical engineering approach. These programming tools are very difficult to use for software developers and the 
challenges of using these tools are compounded by the fact that a developed solution is typically limited to a particular 
device type from one FPGA vendor and porting to another device requires special skills and reengineering efforts.  

The lack of software-oriented development tools and the limitations in application portability have been a major 
challenge for the wider uptake of FPGAs in the HPC field. Another factor has been the lack of commercial, off-the-shelf 
FPGA accelerator cards with surrounding software infrastructure and management tools which is expected for an HPC 
environment and the higher price of FPGA cards compared to GPUs. Finally, FPGAs are typically used as accelerators on 
the PCIe bus, where it is inefficient to accelerate fine-grain tasks. Acceleration of larger tasks or batches can be highly 
efficient but requires a streaming model of computation. All of these challenges have often relegated FPGAs to more 
niche applications in HPC. 
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More recently, we saw the introduction of several commercial FPGA solutions oriented for HPC. In 2017, Amazon Web 
Services (AWS) introduced EC2 F1 FPGA instances, which made FPGAs available to a wide community without the need 
to purchase special purpose hardware. Xilinx launched its Alveo accelerator cards in 2018, the first datacentre-oriented 
FPGA solution backed by a major vendor. Several hyperscalers, such as Alibaba, Baidu, Microsoft, Huawei, Nimbix and 
Tencent also started recently to expose FPGAs to application developers in their datacenter infrastructure or to provide 
accelerated application-as-a-service, relieving users from the complex FPGA development processes. FPGA programming 
tools have improved and diversified with various concepts to make them more appealing to traditional software 
developers. Both Intel and Xilinx have backed OpenCL based programming models which provide developers a commonly 
used programming model and enables some degree of code portability between different accelerator technologies.  

However, the overall suitability of the OpenCL-based programming model for FPGAs remains contested and highly 
optimised code will no-longer be portable. Other tools have focused on High-Level Synthesis (HLS) where developers can 
build FPGA applications from commonly used software languages such as C and C++.  While this is a more appealing 
model for software developers, it is not suitable for simply importing existing code and it requires careful code 
optimisation to create a high-performing FPGA application. Carrying out such optimisations also requires a hardware-
oriented mindset and consideration of chip resources. Domain Specific Languages or languages with a specific 
programming paradigm can help using FPGA in this context. For example, a dataflow oriented model to programming 
FPGAs can be used, such as introduced in Maxeler’s MaxCompiler [1] , leading to a dataflow model that is conceptually 
closer to an optimal FPGA accelerator architecture and lets developers reason about important design aspects such as 
bandwidth and parallelism while delegating lower-level optimisations to the compiler. The underlying FPGA technology 
has also advanced in recent years to include ultra-density on-chip memory, enable dramatic improvements in frequency, 
adopt 2.5D/3D stacking technology to integrate High Bandwidth Memory (HBM) and to integrate AI-oriented processing 
units in a network-on-a-chip architecture (e.g. in Xilinx Versal ACAP). 

Another approach to optimizing FPGA architectures for HPC applications is the move towards more coarse-grain 
reconfigurable architectures (CGRAs) [2]. While CGRAs have not been commercially successful within the original concept 
of changing the device architecture to more coarse grain programmable units such as byte-wide interconnect and 
programmable ALUs and memory tiles, one could argue that modern FPGAs include various coarser grain blocks in 
addition to the conventional fine-grain fabric. One example is the introduction of a mesh-like CGRA structure of a 
programmable processing array in Xilinx Versal ACAP devices. While the elements themselves are fairly general-purpose, 
they are mostly promoted by Xilinx as targeting deep learning and telecommunication applications. However, an 
adequate software stack is needed to leverage the algorithm-hardware co-design of such a heterogenous fabric with 
fundamentally different programming models. One could also interpret Groq’s AI-oriented Tensor Streaming Processor 
(TSP), which uses a static dataflow model, as an evolution of the FPGA concept with much coarser grain vector and matrix 
processing units and wider interconnect (more in section AI chips). 

While significant advances towards using FPGAs in HPC 
have been made, the programming challenge of using 
productive programming models that are high-level, 
maintain efficiency of the developed application and 
support code portability remains one of the central 
aspects. On the system level, further work is required to 
better manage FPGAs through an Operating System, 
execute an application in-parallel on multiple FPGAs, run 
multiple applications on the same FPGA, and provide 
support for resource management in a multi-user 
environment and virtualisation support.  

Neuromorphic computing architectures 
Neuromorphic or brain-inspired computing describes a field of unconventional computing research that takes certain 
aspects of what is known about the brain (where knowledge is far from complete) and applies it to novel computing 
models using various combinations of novel device technologies, analogue circuit approaches, and digital technologies. 
A common feature of all these approaches is the use of some form of event-based processing, inspired by the use of 
spikes, which are purely events, as a primary means of representing and communicating information in the brain. The 
information is essentially coded in time (frequency, coincidence, timestamping) and not in space, like bits. Some 

While significant advances towards using FPGAs in HPC 
have been made, the programming challenge of using 
productive programming models that are high-level, 
maintain efficiency of the developed application and 
support code portability remains one of the central 
aspects 
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neuromorphic research also considers neural models without event-based processing. Neuromorphic systems can be 
seen as having one or several of the following characteristics: 

• Using information encoded in time; 

• Using a sparse representation of information (i.e. variation/derivative of signals, event-based); 

• Using physical phenomenon to carry computation (e.g., Ohm’s law for product, Kirchhoff’s law or accumulation of 
charges for adding, optics for non-linear functions, etc...); 

• Using new materials for storing or simultaneously storing and computing (see just above), like the ones used in non-
volatile memories (MRAM, RRAM, Spintronic, …). 

While a strict definition of neuromorphic computing is still debated [3], ranging from “very strict high-fidelity mimicking 
of neuroscience principles” to “very vague high-level loosely brain-inspired principles”, there is a “wide consensus that 
neuromorphic computing should at least encompass some time-, event-, or data-driven computation. In this sense, 
systems like spiking neural networks (SNN), sometimes referred to as the third generation of neural networks, are 
strongly representative.” 

Neuromorphic systems will operate as accelerators for specific classes of applications alongside a general-purpose host 
system. The host system will be responsible for configuring the neuromorphic subsystem - setting up the network 
topology and parameters, and for converting the data representations and handling data I/O streams. The neuromorphic 
system will handle the event-based computation itself. 

Current developments in neuromorphic computing include architectures based upon analogue circuits, in sub-threshold 
(as per the original work by Carver Mead) or above threshold (e.g., the Heidelberg BrainScaleS) modes of operation, 
parameterised digital engines (e.g., IBM TrueNorth, Intel Loihi) and many-core programmable systems (e.g., the 
Manchester SpiNNaker). There are also developments in novel device technologies, such as memristors, for 
neuromorphic systems which, when they are mature, will transform the density and energy efficiency of those systems. 
It should be noted these neuromorphic accelerators chips differ from the new emerging class of AI accelerator chips that 
carry out neural network  computation on architectures that are optimised for this class of applications (efficient sparse 
matrix operations, tensor operations, convolutions, etc.). These architectures are described in section (AI chips). 

In many respects neuromorphic accelerators will play a similar role to accelerators for artificial neural networks (ANNs) 
but offer improved energy-efficiency due to their sparse event-based model of computation. Compared with 
conventional ANNs, spiking neural networks (SNNs) have greater capacity to process spatio-temporal data streams, 
though algorithms for such processing are less developed than those for conventional classification. 

Neuromorphic integration with HPC 
The next stage of efforts will be channelised at integrating neuromorphic architectures into the HPC ecosystem or 
“computing continuum” with use cases e.g. in health, agriculture, digital twins & sustainable energy. With the emergence 
of new architectures, scientific computing workflows are also going through radical transformations. In these 
transformations Neuromorphic architectures could be the main driver for energy efficient AI/ML processing at edge and 
at data centers. The importance and need for specialised computational architectures to cater to emerging hybrid 
workloads and achieve optimal energy efficiency have been highlighted in [4].  

The following scenarios are envisioned for future of neuromorphic architectures:  

1. Intelligent edge co-processors for distributed cross-platform edge-cloud-HPC workflows  
a. AI inference & training at edge. The data movement is minimised.  

2. Datacenter co-processors / accelerators for machine learning training & inference 
a. Energy efficient AI / ML training & inference at scale  

i. Inference for HPC-AI hybrid workloads  
ii. Training for AI algorithm (Spiking neural network, backpropagation) 

Programmability is still a challenge for these chips, for which the tuning to the application is not done by programming, 
but by a “training” phase, done on device or off device (on a GPU for example). In terms of computability, there is an 
equivalent between space and time coding and there are tools that allow to convert Neural Networks trained “with bytes” 
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to “spiking” representation. “Classical” training methods such as back propagation can also be performed with time 
encoded information (“Spikes”). University level training programs and courses must take the leading role to introduce 
the concept of neuromorphic computing. Also at the same time HPC centers have to facilitate workshops / training 
sessions to map current algorithms onto neuromorphic devices.  

To facilitate development of neuromorphic applications, various frameworks have been introduced. For instance, Intel 
provides a software framework called “Lava” [5]. Lava is a modular, extensible, open-source software framework for 
developing neuro-inspired applications and mapping them to neuromorphic hardware. Lava is platform-agnostic so that 
applications can be prototyped on conventional CPUs/GPUs and deployed to heterogeneous system architectures 
spanning both conventional processors as well as a range of neuromorphic chips such as Intel's Loihi [6].  

There are several other software frameworks for neuromorphic applications, for example NEST [7], Nengo [8], EBRAINS 
[9], N2D2 [10], or others like NEURON, pyGeNN and the meta-framework pyNN.  

 

Analog computing for AI and neuromorphic applications 

In the quest for reduced power consumption of AI workloads, a renaissance of alternative computing technologies can 
be observed. Computing based directly on the analog quantities of electronic circuits, like electric charges and currents, 
could in principle deliver the same AI performance at a lower energy and price point compared to the usage of binary 
numbers, since they require far less transistors to perform the same operation [4] [11]. 

In addition, digital implementations depend on recent process nodes to achieve state-of-the-art power efficiency. 
Thereby, they incur high NRE costs. Analog realizations can be as efficient in much older technologies, thus allowing for 
a significant cost reduction in certain applications.  

The most common analog architectures accelerate inference in deep convolutional neural networks. They implement the 
matrix-vector multiplication (MVM), which is the most costly operation in a deep neural network, by a predominantly 
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analog circuit. By utilizing a processing-in-memory structure, the number of data movements is also reduced. They 
operate by directly multiplying their memory content with the incoming activations, usually by pulse-width modulation. 
The results of these multiplications are summed-up as currents or charges on shared output lines.  

Analog-to-digital converters are used at the output of the analog processing block to restore the partial sums to the digital 
domain for further processing and the subsequent transfer to the next layers. Analog computing can be combined with 
novel memory technologies based on memristive, magnetic or phase change materials to store the weight matrix in a 
dense, power-efficient and persistent way [12]. A first demonstration has already been made of a fully-integrated analog 
in-memory computing core with phase-change memory on 14nm CMOS [13]. There are also novel implementations of 
floating-gate and ferro-electric transistors as memory cells [14].  

Recently, a second analog computing model has been demonstrated successfully, using light instead of electrical signals, 
for instance as shown by LightOn or LightMatter. Photonic computing uses a substrate similar to microelectronics with 
integrated waveguides and optical modulators [15], [16]. Although at the current state of the technology only small 
networks can be implemented, their operational speed in the Gigahertz range makes them unique for applications 
requiring extremely low latencies. 

AI chips 

In the last few years, a range of new architectures have emerged that are targeted specifically at accelerating AI-related 
computations. Demand for AI computations is driven by many applications including search, advertisement placement, 
personalization and data analytics. The widespread introduction of services with natural language processing or image 
recognition have significantly increased the performance requirements for AI computations where conventional CPUs or 
GPUs were no longer cost effective. Further applications of AI include cyber security and fraud detection, self-driving 
vehicles, industrial, healthcare and HPC applications. 

The focus of AI architectures is typically on inference; training is only carried out once and can be done with very high 
effort. Inference is run at a very large scale, often with strict performance requirements, therefore requiring special 
architectures that can carry out the computations quickly and efficiently. Nevertheless, the acceleration of training is also 
gaining attention recently. Broadly speaking, AI chips target tensor operations (in particular matrix multiply) in 
combination with mixed or lower precision operations. Both of these aspects are relevant in AI (in particular inference) 
applications and focusing on lower precision matrix multiplication makes these chips more efficient for AI applications 
than GPUs which are more vector oriented.  

In 2016, Google introduced the Tensor Processing Unit (TPU). TPUs are focused on matrix multiplication 
operations and support lower precision operations. The first version TPU only supported Int8/Int 16 
and were used for inference, but since the second version, they are also optimized for learning and 
support a new 16 bit floating point format.  TPUs are very efficient for computing models with very 
large batch sizes and they are programmed through Google’s TensorFlow framework. TPUs are mostly 
used to support Google’s internal services with limited access for other vendors to the TPU hardware. 

Groq recently launched an AI chip called the Tensor Streaming Processor (TSP), a massively parallel architecture of matrix 
and vector units interleaved with memory units that execute in a static dataflow model [17]. This provides abundant data 
parallelism and the static execution model eliminates all caches, branch predictors and arbiters. As a result, the chip 
offers very efficient processing with deterministic behaviour. The TSP is also very efficient at small batch sizes and 
computes with low latency which is important for real time applications. Furthermore, the TSP offers fast chip-to-chip 
interconnect which enables the efficient scaling of computational models. Graphcore is offering the Intelligence 
Processing Unit (IPU), a massively parallel architecture with many small processor cores and local memory, which is 
efficient at executing fine-grain threads with irregular behaviour [18]. The IPU is conceptually closer to a conventional 
multi-core processor but provides more parallelism than CPUs and is more efficient at irregular workloads than GPUs. 
Cerebras has launched the Wafer Scale Engine (WSE), a single, wafer-scale processor that includes compute, memory and 
interconnect [19]. Processor cores are optimised for sparse linear algebra. The entire architecture is optimised on system 
level rather than adding PCIe form factor cards to conventional servers. They released the CS-2 system featuring a very 
large number of cores, on-chip SRAM, and bandwidth.  

To address the pervasive need for efficient AI computations in many applications, several conventional architectures have 
also been extended to enable efficient inference. Intel Xeon Ice Lake processors contain an instruction set extension 
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called DL Boost that supports efficient multiply-accumulate operations and lower precision 16-bit floating point 
operations. IBM Power10 includes the new matrix-multiply assist instructions executed by four engines per core to 
accelerate inferencing operations. Nvidia Ampere GPUs have been extended with tensor cores that also support 16-bit 
floating point operations. Xilinx Versal FPGAs contain AI engines that provide simple vector processors in a VLIW 
architecture. 

AI processors are typically programmed through established machine learning frameworks such as PyTorch or 
TensorFlow. Some AI processors also offer lower-level programming models which can be used to develop non-AI 
applications on these platforms. In a similar way to how the emergence of GPGPU architectures has led to non-graphics 
applications being considered for GPU acceleration, there is now interest to port applications from HPC and other fields 
onto AI chips, leveraging the efficient matrix-compute capabilities of these architectures. This typically requires the 
algorithms to be restructured such that they can be expressed in a machine learning framework, use the arithmetic 
precision of the accelerators or some other tensor-level API, and therefore presents similar challenges to other 
unconventional architectures in that developers need to restructure code and learn new development frameworks. 

Processing in memory - PIM   

Processing in memory (PIM) is a generic term that covers any form of integration of processing capabilities into the 
memory system, of which there are many approaches; e.g. computation in memory arrays, peripheral circuits, and logic 
layers and dies integrated into the memory devices. PIM has been explored by a large number of academic studies and 
it has already been demonstrated in various industrial prototypes and products, initially targeting near-memory 
computing, with DRAM and SRAM, and extending to non-volatile memory technologies of PCM, RRAM, and Flash. Analog 
in-memory computing can be seen as a form of PIM, where some computations are performed in the memory arrays 
themselves. 

The interest in PIM has grown dramatically over the last years. In 2020, the EuroLab4HPC Vision [20]already included a 
survey of the approaches for near- and in-memory processing and it recommended funding in this direction. In the same 
year, ETP4HPC’s Strategic Research Agenda [21] called near and in-memory architectures the “ultimate option” to 
improve energy efficiency, but correctly saw the approach as not mature enough for short-term adoption in production 
systems. A recent white paper from ETP4HPC [22]advises that wide acceptance of PIM in high-performance computing 
depends on our ability to create an ecosystem in which a number of PIM approaches can be designed and evaluated, 
leading to the selection of potential winners and adoption 
by system architects and end users. The study identifies 
the main PIM challenges and provides guidelines to 
prioritise the research effort and funding, encompassing 
development and evaluation platforms, system software 
to manage the hardware, APIs and programming models 
to program it, profiling and analysis tools to analyse it, and benchmarks, simulators and platforms to evaluate the overall 
benefits. Overall, it can be concluded that only coordinated innovations and co-design across the whole stack can make 
PIM a reality in production. 

  

Only coordinated innovations and co-design across the 
whole stack can make PIM a reality in production. 
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Architectures, storage, and networking 
HPC system architecture is evolving from traditional monolithic servers towards servers that can be dynamically 
composed from a precise set of resources to meet workload requirements. Such resources are envisioned to be 
disaggregated into pools of various types of CPUs, accelerators, (persistent) memory, storage, etc, accessible via high-
performance fabric and orchestrated by an intelligent infrastructure. This will allow maximization of usage of such 
resources while powering down unused ones.  

This evolution in HPC architecture is needed as a result of the more complex workflows that are increasingly implemented 
in HPC applications. As an example, they can include large knowledge graphs (memory capacity and bandwidth intensive), 
training of and inference on AI models (large datasets and compute intensity), and the execution of classic simulation 
codes (memory or compute bound) [23]. The technologies that will enable such an evolution include the introduction of 
high-performance coherent fabrics to flexibly wire such composable systems together. Promising steps are the 
introduction of standards such as CXL, with fast signaling protocols such as PCIe Gen 6 that will provide the latency and 
bandwidth needed for disaggregation of system resources.  In terms of I/O technologies, the continued increase in speed 
is expected to come from the adoption of new modulation techniques (e.g. frequency domain) and the pairing of short 
low-latency electrical links together with co-packaged optics. 

New challenges will arise to ensure that pools of resources such as persistent memory offer a similar level of reliability 
and availability as with traditional fabric attached storage. This will necessitate the exploration of new approaches to 
perform certain types of computing tasks close to memory, or in the fabric itself. Similarly, this will apply to storage to 
offload the fabric, exploiting techniques such as active storage or processing in storage. 

From an ecosystem point-of-view, such composable systems based on a standardized fabric will enable the creation of 
multi-vendor systems, avoiding lock-in to proprietary fabrics, as well as allow independent updates of components 
without the need to synchronize all release dates. Furthermore, these more complex HPC workflows are expected to 
seamlessly take advantage of resources available on-premises as well as across various locations from external cloud 
providers, for instance to benefit from temporary spill-over capacity or access to highly-specialized and/or bleeding-edge 
accelerators that aren't available elsewhere. Again, orchestration by an intelligent infrastructure will need to extend to 
such scenarios. 
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Unconventional models of computation 
Approximate computing 

Approximate computing encompasses diverse approaches such as variable precision models, novel number 
representations and stochastic rounding. These techniques are enabled by the unique features of novel architectures 
(e.g., low precision and integer modes in AI chips and completely flexible arithmetic on FPGAs). The vast majority of 
current HPC applications use either single or double-precision floating point formats but the actual numerical 
requirements and properties of algorithms are often not explored in greater detail as conventional CPU architectures 
simply offer a binary choice between single- and double-precision formats. Double-precision arithmetic is often seen as 
“correct” even though this number representation is also an approximation in a strict sense and not immune from 
introducing numerical problems. New unconventional architectures offer a much wider choice of number formats such 
as low-precision floating point, integer or fixed-point numbers, and using them effectively requires a careful analysis of 
the numerical behaviour in the application development and porting process. It requires detailed knowledge of how much 
error is acceptable at the output of an algorithm or solver, and then tracing backwards through the computation what 
value ranges and precision are needed at the various stages in order to produce suitably accurate output numbers. There 
is typically no general and analytic solution available to this problem. Instead, the optimisation process often requires 
experimentation and detailed instrumentation of the code, and the derived solution can be limited to the context of a 
particular input dataset type or algorithm configuration. Figure x shows an example of numerical application profiling. 

 

 

Figure 1 - Numerical analysis with Maxeler’s value profiling tool 

Stochastic rounding describes a rounding process where the result is randomly rounded up or down with a probability 
that is a function of the residue being rounded. It has been shown to yield more accurate results over long computational 
sequences than any of the conventional (deterministic) rounding algorithms such as round to nearest, and has the 
potential to be embedded at low cost into fixed- and floating-point arithmetic units. If the random process is generated 
by a high-quality pseudo-random number generator (PRNG) the computation can be repeatable by using the standard 
technique of controlling the PRNG seed. The improved accuracy can be traded against the use of reduced precision 
operands, leading to reduced energy and memory requirements. 
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Another aspect of approximate computing is to use approximation circuits instead of conventional arithmetic units, or to 
use arithmetic units that are somewhat faulty or operating at lower voltages thus producing a certain number of bit 
errors. Individual results may be wrong, but if the application is based on statistical models, then occasional incorrect 
results may be acceptable as long as statistical properties of the algorithm are maintained. 

 

AI-inspired models for HPC 

We also observe a convergence of AI and HPC technologies. AI is very compute intensive and requires sophisticated HPC 
infrastructure while HPC applications can also benefit from AI algorithms. Fundamentally, HPC applications attempt to 
model some form of real word process and in many cases (e.g. image or time series analysis) this model can be obtained 
by feeding training data into an AI algorithm. Practical examples of this are the identification of cancer from a medical 
imaging process or the discovery of events in a high-energy physics experiment. However, at the moment there is a strong 
experimental component in the application of AI algorithms to HPC algorithms. There is no common approach to pick the 
appropriate model and hyper parameters that can achieve fast convergence during training, and new mathematical 
frameworks will be needed to guide HPC developers in integrating AI into their applications. Another challenge lies in the 
black box behaviour of AI where the algorithm is known to work with a certain statistical level of accuracy but the 
behaviour of specific outputs (in particular bad outputs) cannot be understood in the context of the deployed AI model. 
This can be solved through new explainable AI techniques 
that allow the behaviour of an output to be traced back 
and understood through the model. Explainable AI is of 
particular importance for the greater acceptance of AI in 
the medical field. Finally, AI and HPC applications are 
typically built around different programming frameworks 
and data scientists and HPC developers often have very 
different backgrounds and skill sets. The convergence of 
AI and HPC will require efforts to bring together the different technologies and communities. At the same time, AI may 
also be able to address some of the development and technological challenges by applying AI to the coding process. 

  

The convergence of AI and HPC will require efforts to 
bring together the different technologies and 
communities. 
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Dataflow computing 

Conventional processors function by carrying out a sequence of instructions. This model is very flexible but also inherently 
sequential. Over the decade, many architectural innovations have been developed to boost performance of a sequential 
CPU such as superscalar execution, out-of-order execution, branch prediction, Single Instruction Multiple Data (SIMD) 
extensions, and finally multi-core CPUs. All of these make modern CPUs very complex where a lot of silicon real estate is 
needed to keep a small execution unit running at high speeds.   

Dataflow architectures fundamentally differ in that they do not rely on control flow or program counters for execution; 
instead operations are carried out by making input arguments available to instructions. A whole range of different 
architectures have been developed under the umbrella term of dataflow and they can be typically classified as dynamic 
or static dataflow. Dynamic dataflow architectures result in non-deterministic behaviour and require large content 
addressable memories (CAMs). To date, dynamic dataflow machines have seen limited applications in practice although 
out-of-order execution can be seen as a very limited form of dataflow where sequential execution can be broken and 
rearranged depending on the availability of input data. 
Event-based processing as used in neuromorphic 
computing can also be seen as a special case of dataflow. 
Static dataflow is often applied in the context of a systolic 
array or processing network architecture. Here, data flows 
from memory over an array of operators where 
computations are performed when data arrives at the 
inputs. The outputs are sent forward to the next operator; 
hence computations are performed by data flowing 
through the system. This model of computation is 
deterministic and it eliminates the need for caches as data 
arrives at the inputs of an operator at a predetermined 
time. A significant advantage of a deterministic model of 
computation in static dataflow is that performance and 
system behaviour is completely predictable, simplifying 
the design and optimisation process [24]. Furthermore, it 
minimises data transfers to mostly small local movements 
and mostly avoids inefficient transfers to off-chip memory 
which is one the major bottlenecks in conventional CPU 
architectures. Maxeler Technologies has applied the 
model of static dataflow to programming FPGAs where a 
Java-like dataflow language called MaxJ is used to build 
deep pipelines that are then mapped to the FPGA. The 
dataflow model is also used in the Groq TSP where tensors 
flow over the execution units of the chip, resulting in 
deterministic and low latency operations. 

 

Figure 2 - Example of a static dataflow graph. 
Computations are carried out whenever input data is 
available and partial results flow through the graph 
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Programming models, porting and code maintenance 
Unconventional architectures typically require specific programming models and tool chains. The introduction of new 
tool chains often results in training needs for developers who have to become proficient in using a new programming 
language or model, in particular if the model leverages a different style of execution which requires different thinking 
when developing applications. For example, using a multi-threading library is relatively easy for code that naturally 
presents various blocks that can operate independently, but tweaking complex code for efficient parallel execution can 
be very challenging and requires the developer to fundamentally re-examine the existing code. Similar challenges are 
faced and are even increasing when programming unconventional architectures. In particular, porting and maintaining 
large existing code bases is challenging. HPC applications are often developed over many years by a team of developers, 
resulting in large and complex code bases. A need to port this code to a new architecture is often seen as a significant 
obstacle by the developer team. Furthermore, the porting may not be just a one-time effort as highly specialised 
architectures have limited code portability to newer generation devices. The same code may still be usable but may 
require re-optimisation in order to fully leverage the performance of the new device, as opposed to legacy x86 code 
which typically does not need constant re-optimisation and can simply benefit from faster processors. This creates a 
significant challenge in terms of code porting and maintenance which is not sufficiently addressed at the moment.  

Developing applications for systems with unconventional architecture can be far from trivial and significantly more 
complex than conventional HPC programming. This is mainly due to the high degree of specialisation where a set of very 
specific application and data properties have to be captured in efficient computational solutions. To prevent repeating 
the errors from the past, e.g., the initial lack of software and tools for the Cell processor, the failure of, for example, 
Larabee, Tabula and other products, we have to invest early into creating better software tools as well building vivid 
designer communities around the new, unconventional acceleration technologies. These designer communities can be 
organised by computing technology, by application domains or ideally by the right combination of the above two. 
Repositories with design examples, template architectures, application centric methodologies and active discussion 
boards will serve as the driving vehicle of this process. Considering the challenges around porting and developing full 
system applications for unconventional architectures, this is going to be crucial. Universities and research centres will 
play a leading role by involving their undergraduate and graduate students who will contribute at different levels. There 
will be plenty of opportunities for high-impact research and engineering contributions that should naturally attract many 
European universities to actively participate. 

Moreover, these communities will also streamline the discussions between the domain experts, who are the final users 
of the developed systems, and the computer engineers and researchers working on specific challenges at all different 
system levels. If organized correctly, such vertical cross-disciplinary discussions will also provide valuable insights for fine 
tuning of the underlying hardware technologies, computational models and abstractions. The repositories with e.g., 
template designs, Q&A discussions and various documentation, should be open source.  

A complementary approach could be to better structure the code into modules that have defined computing 
characteristics (that are exposed in a systematic way), and therefore only these parts should be optimized to benefit from 
the new accelerators that fit with the characteristics. From a system point of view, the work of orchestrating those 
different accelerators should be further explored and optimized, both at compile time and at run-time.  

These challenges of code porting and development are examples that can also be addressed by the introduction of AI-
based approaches, such as AI for code. Emerging benchmark datasets such as Project Codenet, and tools such as OpenAi 
Codex or Deepmind’s AlphaCode are a first step in this direction. More generally, methodologies to develop software-
hardware platforms must shift towards AI. A leading example is already showing the benefit of ML for the IC EDA tool 
chain [25]. Developing AI-based tool chains to address the problem of finding the best HPC architecture and associated 
code bases is clearly one of the most promising approaches for unconventional HPC systems. 
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Conclusions 
With the end of Moore’s Law and the end of “free” performance improvements in sight, the industry has shifted from 
following a parallelism-oriented approach of pursuing further performance gains to embracing specialised and 
unconventional architectures as a paradigm to improve both performance and energy efficiency. A specialisation trend 
has already been observed in mainstream CPU architectures from mobile and desktop to data center. FPGA accelerators 
are now emerging in the data centre and offer an extreme amount of specialisation in terms of compute architecture and 
numerical choices, but are burdened by non-standard programming models and code porting challenges. New AI chips, 
developed to address the processing needs of data-driven applications, are highly efficient at lower-precision, matrix-
oriented computations and are now also being considered for HPC applications. Neuromorphic architectures, based on 
spiking models, can play a similar role in AI but could potentially be more energy efficient because of their inherent 
sparsity and potential simpler non-CMOS implementations. Analogue implementations could also help to drive down 
development cost and power consumption. Processing in memory architectures address the IO bottleneck problem of 
conventional von-Neuman architecture and enable simple operations close to the data. An overarching theme across all 
of these architectures is that they reduce data movements because these (in particular off-chip IO) are increasingly 
becoming a limiting factor from both a performance and energy perspective. 

These new architectures are accompanied by new models of computation such as computing with custom-precision and 
different number formats which can deliver good-enough results at higher efficiency. Dataflow computing models benefit 
from minimal data movements as well as deterministic execution. AI algorithms can help to derive models for HPC 
applications from large amounts of data. All of these technologies provide unique benefits but they can also pose 
challenges because they are non-standard. In order to harness these technologies effectively we need support for better 
tools for software development and porting as well as increased efforts for community building, training and education. 
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