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Introduction 
Decades after being initially explored in the 1970s, Processing in Memory (PIM) is currently experiencing a renaissance.  
By moving part of the computation to the memory devices, PIM addresses a fundamental issue in the design of modern 
computing systems, the mismatch between the von Neumann architecture and the requirements of important data-
centric applications. A number of industrial prototypes and products are under development or already available in the 
marketplace, and these devices show the potential for cost-effective and energy-efficient acceleration of HPC, AI and 
data analytics workloads. This paper reviews the reasons for the renewed interest in PIM and surveys industrial 
prototypes and products, discussing their technological readiness. 

Wide adoption of PIM in production, however, depends on our ability to create an ecosystem to drive and coordinate 
innovations and co-design across the whole stack. European companies and research centres should be involved in all 
aspects, from technology, hardware, system software and programming environment, to updating of the algorithm and 
application. In this paper, we identify the main challenges that must be addressed and we provide guidelines to prioritise 
the research efforts and funding. We aim to help make PIM a reality in production HPC, AI and data analytics. 

 

Key insights 
The tipping point for adoption of PIM is 
imminent for three main reasons:  

• Firstly, PIM avoids the von Neumann 
bottleneck, a fundamental limitation to the 
effective use of computing systems for a 
large range of important data-centric 
applications.  

• Secondly, it matches the community’s 
requirement for efficient application 
acceleration by reducing the amount of 
expensive data transfers, and demonstrates 
orders of magnitude improvements in 
performance and energy.  

• Thirdly, PIM has reached a high 
technological readiness confirmed by 
various industrial prototypes and products.  

Wide acceptance of PIM, however, depends on 
our ability to create an ecosystem in which a 
number of PIM approaches can be designed and 
evaluated, leading to the selection of potential 
winners and adoption by system architects and 
end users. 

 
Key recommendations 

To enable adoption of PIM technologies in production 
systems and applications, the community has to: 

• Build PIM software development vehicles, prototypes 
and commercial products that will be used by early 
adopters to develop and evaluate system software and 
applications. 

• Manage PIM hardware with advanced firmware, OS 
and system software. 

• Programme target applications and kernels with 
enhanced Application Programming Interfaces (APIs) 
and programming models supported with PIM-aware 
emulators, compilers, runtimes and libraries.  

• Provide users with profiling and analysis tools capable 
of detecting application phases and kernels that are 
suitable for offloading to PIM. 

• Evaluate PIM proposals with recognised benchmarks, 
simulators and HW platforms. The evaluation metrics 
should include performance, power, energy and total 
cost of ownership, but also system usability, resilience, 
security and economic viability, including an analysis of 
the market size and production cost. 

1. From von Neumann Bottleneck to Processing in Memory  
From early designs, computer systems have maintained a strict separation between CPU and memory, forming the von 
Neumann bottleneck. This bottleneck, present from the very smallest scale embedded systems to the highest 
performance supercomputers, is especially detrimental to data-centric applications that poorly match the assumptions 
underlying a modern memory hierarchy, i.e. that have large data volumes, low operational intensity, low spatial and 
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temporal locality, and unpredictable data access patterns. Many of these characteristics arise in algorithms such as 
sorting, filtering, hashing, associative memories, pointer-chasing, array and matrix address management, graph 
operations and time series analysis. These algorithms are widely used in important application domains, especially data 
analytics (big data and database workloads), machine learning, artificial intelligence, deep learning, bioinformatics (e.g. 
genome analysis), and scientific computing.  

The community has been trying to address the von Neumann bottleneck for decades. For example, high memory latency 
can often be mitigated using latency-hiding techniques, such as out-of-order execution, branch prediction, data 
prefetching, up to three levels of cache memory, data buffering, and more. These techniques have been successful in 
improving performance to a degree, but the downside has been increased complexity, high development and per-unit 
costs, and high power consumption. And yet, memory latency is still an important limitation to computer system 
performance [1]. This is because the problem to be solved is a fundamental one—the mismatch between the von 
Neumann architecture and the requirements of important data-centric applications. At this point, additional incremental 
opportunities to improve performance are close to be exhausted and it is time to look afresh at a different approach to 
the problem, the tight integration of data and processing. This approach is referred to as Processing in Memory (PIM). 

PIM is not a new idea. It was first explored in the 1970s [2, 3] and is currently experiencing a renaissance due to a 
combination of the community requirement for cost- and energy-efficient application acceleration and technological 
readiness. The interest in PIM has grown dramatically over the last years. In 2020, the EuroLab4HPC Vision [4] already 
included a survey of the approaches for near- and in-memory processing and it recommended funding in this direction. 
In the same year, ETP4HPC’s Strategic Research Agenda [5] called near and in-memory architectures the “ultimate option” 
to improve energy efficiency, but correctly saw the approach as not mature enough for short-term adoption in production 
systems. Now is, however, the time to make the necessary research investments, across the whole stack, from hardware 
to programming environment to applications, in order to drive the adoption of PIM technologies. 

For more perspective on the historical evolution of PIM concepts from the 1970s till today, don‘t miss  „Data-
Centric Computing Frontiers: A Survey On Processing-In-Memory“ by Siegl et al. [3].  

2. The Hidden Power of Memory  
The high latency and low bandwidth of main memory is often thought to be a consequence of the memory technology, 
e.g. the timing parameters associated to the memory cells or cell-arrays. But this is wrong. In fact, most of the main 
memory access latency does not come from the time required to access the memory cells, but from the overall complexity 
of the memory system in both hardware (e.g. CPU cache hierarchy) and software (e.g. virtual memory management). 
Main memory bandwidth is also not limited by the internal architecture of the memory device and its timings, but by the 
narrow external CPU-to-memory interface.  

We illustrate the problem using an example DRAM DIMM architecture. Figure 1 shows one side of the DIMM, holding 
one rank. Each rank contains multiple DRAM chips that work in sync, and each chip comprises multiple banks that can be 
accessed independently. Banks hold memory cells organised into two-dimensional arrays of rows and columns managed 
by the peripheral circuitry.  

Internal memory latency in current DDR3 and DDR4 devices could be as low as 15 ns [6, 7]. This is the time required to 
read data from the memory array to the sense amplifiers, defined by the JEDEC standard as the Activate to internal Read 
delay (tRCD) timing parameter. The external memory access latency, the main memory latency perceived by the user, is 
the time required for a load instruction to access data in main memory. This timing is platform-specific as it includes the 
time spent in the CPU load/store queues, cache hierarchy, network-on-chip and on-chip memory controller. In current 
architectures the minimum external memory access latency, corresponding to the simplest case of a single memory load 
in an idle system, starts at 90 ns [8], exceeding the internal device latency by 6x. 
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The difference between internal and external DIMM performance is even more pronounced if we consider the memory 
bandwidth. DIMMs are connected to the CPU over narrow memory channels that can transfer only 64 bits (8 bytes) of 
data on each edge of the clock, i.e. each half cycle. Bandwidth of conventional DDR channels is in the order of tens of 
gigabytes per second, e.g. 21 GB/s for DDR4-2666 channels. Internally, however, each per-rank DRAM row operation is 
performed on 8 KB of data,1 and multiple ranks and banks access their memory arrays independently. This means that a 
conventional 2-rank 8-bank DIMM can simultaneously handle 128 KB of data. The memory array row cycle has a total 
latency of tens of cycles, e.g. 62 cycles for DDR4-2666 [6]. This means that the internal DRAM memory bandwidth of 2-
rank DDR4-2666 DIMM is 3884 GB/s.2 Overall, the cumulative internal memory bandwidth exceeds the external 
bandwidth by more than two orders of magnitude.  

 

Figure 1: Internal DDR DRAM memory device performance significantly exceeds the performance seen externally by the 
user: starting from 6x in terms of latency and two orders of magnitude in terms of bandwidth. Huge internal data 
movement capabilities motivate the integration of processing directly into the memory devices. Processing in memory 
(PIM) can be performed at various levels: directly in the memory arrays, in peripheral circuitry or in logic layers and dies 
integrated into memory devices.  

 

1 The actual DRAM chip row size is assumed here to be 1 KB [6].  In the text by “row” we mean instead the combination 
of the rows activated in all the eight distinct DRAM chips that work in sync (lockstep mode).     
2 Internal bandwidth of a dual-rank  DDR4-2666 DIMM is  128∗1024 [Bytes]
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3. Technology Readiness 
As discussed in Section 2, integration of processing directly into memory devices has been motivated by the potential for 
huge internal data movement capabilities, low latency and high bandwidth. Processing in memory (PIM) is a generic term 
that covers any form of integration of processing capabilities into the memory system, of which there are many 
approaches; e.g. computation in memory arrays, peripheral circuits, and logic layers and dies integrated into the memory 
devices (see Figure 1). PIM has been explored by a large number of academic studies [3, 9] and it has already been 
demonstrated in various industrial prototypes and products:  

Micron’s Automata Processor is based on an adaptation of DRAM memory arrays and peripheral circuitry to achieve a 
hardware implementation of non-deterministic finite automata [10, 11]. The Automata Processor accelerates pattern-
based algorithms, e.g. pattern matching and pattern recognition, which are common in many application domains 
including data mining, cybersecurity, bioinformatics, image and text processing. Another Micron’s PIM architecture is 
Micron In-Memory Intelligence (IMI) [12]. The IMI architecture is a standard DRAM in form and function with the ability 
for massively parallel computation, by supporting vector instructions over the entire bank. The IMI targets big-data 
problems in imaging, vision, convolutional neural networks, content addressable memory, encryption, compression, 
search and sorting.  

UPMEM’s advanced DRAM chips embed DRAM processing units (DPUs) next to each DRAM bank. The current 500 MHz 
DPU implementation is successfully integrated in DDR4-2400 DIMMs manufactured in a 2x-nm DRAM process, and its 
first evaluations show significant performance improvements for pattern matching and database applications [13].  

Through-silicon vias (TSVs) and 3D packaging of DRAM and logic dies enable a new approach to memory system 
architecture. Hybrid Memory Cube (HMC) [14] is the first architecture that exploits the concept of DRAM die stacking on 
top of a high-performance logic die. The logic die is responsible for DRAM sequencing, refresh, data routing, error 
correction and high-speed SERDES interconnect to the host CPU.  Other natural candidates for inclusion in the HMC logic 
layer are low-operational high-data-intensity functions such as atomic memory operations, cache coherence 
management, scatter/gather operations and meta-data processing. High Bandwidth Memory (HBM) [15] is a JEDEC 
standard for 3D-stacked DRAM dies connected with TSVs. The HBM standard explicitly allows an optional logic base layer 
that can redistribute signals and implement logic functions.3 HBM devices are already widely-used in the GPU domain 
and are adopted by some emerging processor architectures [16, 17, 18].  The first mainstream servers with high-end x86 
processors and HBM are soon to hit the market. 

Samsung has recently announced its Function-In-Memory DRAM (FIMDRAM) for HBM2, which integrates into the Single-
Instruction Multiple-Data (SIMD) programmable processing units (PCUs) in each memory bank [19]. The HBM2 FIMDRAM 
chips are manufactured in a 20-nm DRAM process and the PCUs operate at 300 MHz. The PCUs exploit bank-level 
parallelism, with eight PCUs per pseudo-channel. They benefit from 4x higher data bandwidth than is possible with an 
off-chip memory solution and overall provide a total processing power of 1.2 TFLOPS for FP16 matrix-vector calculations 
targeting machine learning applications.   

PIM is traditionally associated with mainstream DRAM devices. In addition, numerous recent and ongoing studies are 
actively exploring the potential for PIM in various levels of the memory hierarchy and in emerging memory 
technologies. Processing in memory can also be performed in the SRAM used in on-chip caches or stand-alone 
accelerators.  In Europe, computational SRAM design, chip manufacturing and programming is explored by CEA, the 
French Alternative Energies and Atomic Energy Commission [20, 21], IBM Research Zurich and ETH Zurich [22]. PIM 
capabilities are also demonstrated by various emerging memory technologies: phase-change memory (PCM) [23], 
resistive-RAM (RRAM) [24, 25, 26] and Flash [27]. 

  

 

3 High-bandwidth memory devices, HMC and HBM, address the von Neumann bottleneck in two orthogonal ways. First, 
they increase the bandwidth between CPU and memory, and second, they support PIM extensions which delegate part 
of the computation to the memory devices. 
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In addition to demonstrating the capabilities and high performance of PIM, these studies also consider the complexity 
and the associated cost of integration. The costs of processing directly in the memory devices include additional silicon 
area, potentially leading reduced storage capacity, increased power and energy consumption, and device cost. The trade-
off analyses clearly show superior performance-per-watt and significantly better total cost of ownership compared with 
conventional architectures.  

Finally, a commonly forgotten example of PIM that is already widely implemented in production memory devices is an 
on-die Error Correction Code (ECC). Although on-die ECC is a fixed computation not programmable by the user, it is an 
important PIM example since it demonstrates capability to integrate computation directly in the memory peripheral 
circuits. The on-die ECC improves data integrity within many current DDR, LPDDR and PCM devices [28, 29, 30].  

A simple form of Processing in Memory is already incorporated into numerous commercial memory devices. 
On-die ECC is an effective way to provide high memory density, capacity and bandwidth without 
compromising power and reliability.  

4. Challenges  
PIM is approaching a tipping point for three reasons. Firstly, it avoids the von Neumann bottleneck, a fundamental 
limitation to the effective use of computing systems for a large range of important data-centric applications. Secondly, it 
matches the community’s requirement for efficient application acceleration by reducing the amount of expensive data 
transfers and, for some applications, it already demonstrates orders of magnitude improvements in performance and 
energy [10, 11, 12, 13]. Thirdly, it has reached a high technological readiness confirmed by various industrial prototypes 
and products.   

Wide adoption of PIM, however, depends on our ability to create an ecosystem in which a number of PIM approaches 
can be designed and evaluated, leading to the selection of potential winners and their adoption by HPC system architects 
and end users. Creating the PIM ecosystem will require innovations and co-design across the whole stack, from 
technology, hardware, system, software and programming environment, to updating of algorithms and applications. To 
address these challenges, the HPC community has to: 

 
Figure 2: We have to create an ecosystem in which the community will be able to build, manage, program and evaluate 
PIM approaches. Only after a number of these proposals is designed and evaluated, will it be possible to select potential 
winners and enable their adoption by system architects and end users.  
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1. Build PIM software development vehicles, prototypes and commercial products that will be used by early adopters 
to develop and evaluate system software and applications. Design space exploration of the PIM proposals has to be 
supported with PIM simulators and analytical models. In addition to the PIM engines, the community has to consider 
the interfaces between the PIM accelerator and the rest of the system (e.g., host CPU). These interfaces can be 
designed specifically for PIM accelerators or they could be adopted from a range of emerging industrial solutions, 
such as CXL [31] and CCIX [32]. 

Exploration of PIM should cover all technology variants, including DRAM, SRAM, Flash and emerging technologies, 
and the four key domains of HPC, cloud, embedded and edge. Also, the community should continue exploring PIM 
at all system levels, including on-chip caches, off-chip main memory and near storage (not covered in this document). 
Although, some of the emerging PIM technologies are more complex to integrate and not yet production ready, we 
should keep investing in their exploration as they open new systems design trade-offs and opportunities. 

2. Manage PIM hardware with advanced firmware, OS and system software. PIM support in system software has to 
be tightly co-designed with PIM hardware to meet the requirements of production HPC, AI and data analytics 
systems. These requirements include efficient resource utilisation, performance, power, energy, but also system 
usability, resilience and security. To address these requirements, we need to consider the following problems:  

- Applicability for HPC. PIM devices must be capable of efficiently implementing common operations and patterns 
in HPC, most notably by supporting double-precision (and single-precision) floating-point arithmetic. Any 
constraints on code structure or size should be carefully considered in the context of HPC. Many current PIM 
devices are targeted towards ML/AI models, which are already important in HPC, but they are not well matched 
to classical scientific/engineering computing. Since not all HPC applications will be able to benefit from PIM in 
the short term, PIM devices should be able to be used either as conventional memory or a PIM accelerator, on 
an application-by-application basis, without rebooting the system. 

- Data (cache) coherency, if required in a host–accelerator PIM system. Data coherency adds complexity to the 
design, downgrades performance and limits scalability. However, the lack of coherency in systems in which the 
users expect it substantially limits the system usability. Therefore, data coherency should be considered from an 
early design stage for any host–accelerator system, and PIM accelerators should not be an exception.  

- Data placement and alignment in the memory system, e.g. at the level of channel, device, rank, bank, subarray, 
row and column. The main idea of PIM is to avoid data transfers between the location where the data initially 
resides and the location at which it is processed. Therefore, efficient PIM systems should ensure that all 
dependent operands are located (at least) in the same memory device, e.g. DIMM. Some PIM approaches even 
require perfect operand alignment at the level of memory subarray, row and column. In conventional systems, 
this is not possible.  

- The security features have to assure that PIM systems are as secure as conventional ones. This requires a special 
focus on any potential security issues that could be a consequence of an advanced PIM-specific designs. For 
example, as mentioned before, efficient use of PIM requires system software, and indirectly users, to control 
data placement and alignment within the physical devices. Before passing this control to the users, however, we 
have to understand and prevent any security exploits, such as RowHammer [33], that may be facilitated by this 
new ability. On the other hand, PIM solutions can also have native characteristics that make them exceptionally 
fit for secure computing [34].  

- The resilience features implemented in PIM systems should ensure that the failure rate of the system is below 
an acceptable threshold, representative of the technology, system size and target application [35]. This would 
require adjustments to current error detection and correction mechanisms to consider idiosyncratic PIM 
features such as analog computing directly in the 
memory arrays, or wide row-level operations that 
process kilobytes of data at a time. Quantitative 
analysis of the PIM device error rates and the 
effectiveness of the implemented resilience 
features should be performed from early and 
small-scale lab tests to the full-scale production 
systems, as soon as they are deployed.  

To build truly usable systems, resilience and 
security have to be considered from an early design 
stage, not as an afterthought.  
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3. Programme target applications and kernels with enhanced Application Programming Interfaces (APIs) and 
programming models supported with PIM-aware emulators, compilers, runtimes and libraries.  

The ideal scenario would be to develop backward-compatible PIM systems that provide full functionality and 
performance for existing codebases. Any modifications required to existing codes should be as small and local as 
possible, and should be done in a performance-portable and vendor-independent way controlled in the long term 
by open standards. As such, the community should focus in the short to medium term on efficient and productive 
PIM programming based on generic high-level (not device specific) and future-proof PIM APIs.  

The programmer should be able to interleave conventional and PIM APIs, being focused on the desired functionality 
and aware of the characteristics of generic PIM devices, but with the minimum exposure to device implementation 
details. This requires considerable effort to build an advanced software stack that will translate the high-level API 
into the correct and efficient PIM execution, scheduling functions, tasks and/or threads onto PIM devices in a 
composable and dynamic way, automating any necessary data transfers, conversions or coherency operations. The 
task is especially challenging for some PIM approaches, such as analog computing or bulk row-level operations, that 
require novel data types, instruction sets and 
arithmetic operations. Additionally, we have to 
provide users with debugging tools providing visibility 
into PIM execution and profiling and analysis tools 
capable of detecting application phases and kernels 
that are suitable for offloading to PIM.  

4. Evaluate PIM proposals with recognised benchmarks, simulators and HW platforms. This work requires the porting 
and tuning of benchmarks and production applications to a number of PIM platforms, with the objective of 
understanding which PIM designs are most promising and for which application domains. The evaluation metrics 
should include performance, power, energy, and total cost of ownership, but also system usability, resilience and 
security. Once a given PIM design is evaluated with benchmarks from various application domains, its potential 
market size should be contrasted with the production cost, leading to the overall estimate of its economic viability. 
This would also detect application domains that are the most suitable for PIM acceleration. These application 
domains would be the best candidates for early PIM adoption that would motivate further investments in the PIM 
ecosystem. 

PIM programmability is the key for its wide 
adoption. 
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5.  Conclusions  
This white paper has reviewed why Processing in Memory is happening right now. We have discussed the fundamental 
motivations for PIM and surveyed the industrial prototypes and products that already demonstrate a high level of 
technological readiness. PIM is gaining momentum, but its wide acceptance in high-performance computing depends on 
our ability to create an ecosystem in which a number of PIM approaches can be designed and evaluated, leading to the 
selection of potential winners and adoption by system architects and end users. This paper identifies the main PIM 
challenges and provides guidelines to prioritise the research effort and funding, encompassing development and 
evaluation platforms, system software to manage the hardware, APIs and programming models to program it, profiling 
and analysis tools to analyse it, and benchmarks, simulators and platforms to evaluate the overall benefits. Only 
coordinated innovations and co-design across the whole stack can make PIM a reality in production.   
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